Balanço de Massa – Reator CSTR – Calculo de Volume

Considere uma reação que se processa em fase líquida em dada temperatura. Se 30 mol/s do reagente A são alimentados a uma concentração de 3 mol/L, em um CSTR, desejando- se atingir uma concentração de 0,9 mol/L de reagente na saída. Determine o volume do CSTR em Litros.

Dados: Segue abaixo o inverso da taxa de reação do reagente A em função de sua conversão.

Questão de Resolução:

Resolução:

O aluno deve calcular a conversão da reação XAf:

OBS: A reação teve uma conversão de 0,7 (70 %) do reagente em produto. O aluno deve agora com o valor de XAf determinar o valor  do inverso da taxa de reação do reagente A pelo gráfico da questão. Logo se tem:

OBS: 1- Como o reator CSTR não estar em serie se tem que a conversão inicial é zero (XAo = 0).

2- O aluno deve memorizar a equação de projeto do CSTR pois geralmente não é fornecido pelas questões.

Bons Estudos

Balanço de Energia – Turbina – Vapor Superaquecido

Que potência, em KW, poderá ser gerada por uma turbina alimentada com 3600 kg/h de vapor superaquecido a 200 KPa e 400 ºC, o qual sai da turbina a 50 KPa e 150 ºC ?

Equação de Resolução:

Resolução:

O aluno deve determinar as entalpias do vapor superaquecido que entra e determinar também a entalpia do vapor superaquecido que sai para o respectiva pressão e temperatura.

Lendo a entalpia H(entra) para temperatura 400°C em pressão 200KPa = 0,2 MPa na tabela abaixo se tem:

Lendo a entalpia H(sai) para temperatura 150°C em pressão 50KPa = 0,05MPa na tabela abaixo se tem:

Aplicando o Balanço de Energia na Turbina:

OBS: O aluno deve considerar o processo na turbina adiabático (Não ocorre troca de calor da turbina para a vizinhança). Logo se tem:

OBS: O aluno deve converter a vazão mássica de 3600 kg/h para kg/s que é igual a 1 kg/s.

OBS: Na turbina se despreza a energia cinética e potencial devido seu valor ser muito inferior ao valor entálpico. Logo se tem:

OBS 1- O aluno deve converter a unidade de pressão de KPa para MPa para depois ler o valor de entalpia (H) na tabela para a respectiva temperatura.

Bons Estudos

Fenômeno de Transporte – Cavitação – Net Positive Suction head (NPSH)

Usa-se uma bomba centrífuga para transferir um solvente volátil de um tanque para outro. O solvente é um fluido newtoniano e incompressível e escoa na tubulação em regime plenamente turbulento. O relatório técnico das últimas 24 horas mostra que, às 10 horas, a referida bomba operava com carga positiva de sucção (CPS) disponível igual à requerida, e que, no
referido período, a temperatura ambiente variou, conforme mostra a tabela abaixo.

Sabendo-se que os tanques, a tubulação e a bomba estão permanentemente expostos ao meio ambiente, e que as demais
variáveis envolvidas permaneceram inalteradas no referido período, determine em que horas pode ter ocoorido cavitação no impelidor da bomba.

Equação para solução:

Condição para que não ocorra cavitação

Resolução:

O aluno deve saber que o aumento da temperatura se tem um aumento da pressão de vapor do fluido de bombeamento. Isso pode ser constatado no diagrama de fase P(pressão de vapor) versus T (Temperatura) na curva de mudança de fase Liquido-Vapor.

Logo o aumento de Temperatura (T) aumenta a pressão de vapor (P vapor) e como na equação de NPSH a prassão de vapor é negativa o aumento de Pvapor tende a diminuir o NPSH(disponivel) o que é contrario  a condição da desigualdade para que não occorra cavitação.

Como entre 10 h e  16 h se tem um aumento de temperatura acima da temperatura de 34ºC, temperatura esta de 34ºC que faz a igualdade do NPSH disponivel com o NPSH requerido logo é :

Provável ocorrer cavitação entre 10 e 16 horas.

OBS: O aluno deve saber que  a carga positiva de sucção (CPS) corresponde ao termo da língua inglesa Net Positive Suction head (NPSH).

Bons Estudos

 

Termodinâmica – Balanço de Energia em Difusor

A figura representa uma turbina de avião. Numa turbina de avião, o ar sofre compressão antes da entrada do motor. O ar que entra no difusor tem temperatura T1 = 300 K, pressão P1 = 60 kPa, velocidade V1= 250 m/s, e a  cp do ar é 1,0 kJ/(kg.K). Se o processo é isentrópico, qual é a temperatura da entrada do compressor T01.

Equação de Resolução:

Resolução:

Aplicando o balanço de energia no difusor se tem:

OBS: Como o processo é isentrópico (variação de entropia é zero logo dS=0) o aluno deve entender que devido a isso o Q (calor) é igual a zero. Segue abaixo:

OBS: No volume de controle do difusor não se contabiliza o trabalho, logo:

OBS: No difusor a energia potencial de cota (altura) é desprezível, logo se tem:

O balanço de energia resulta em:

Como:

OBS: O aluno deve entender que o difusor é um equipamento que tem a finalidade de aumentar a pressão e fazer sua velocidade tender a zero na sua saída. Logo com isso a velocidade na saída do difusor é zero (v2=0)

OBS: 1- CP é a capacidade calorifica e o aluno deve converter pra j/Kg.K (CP = 1 kj/Kg.k = 1000 j/Kg.K)

Bons Estudos,

Professor Mileo

Termodinâmica – Ciclo Termodinâmico – Turbina

Uma usina termelétrica produz uma potência líquida de 1.000 MW. Se o combustível utilizado, nessa usina, liberar 9.000.000.000,0 kJ/h de energia integralmente absorvidos pelo fluido de trabalho, a taxa (MW) na qual o calor é rejeitado pela usina é

Equação de Resolução:

Resolução:

Pela primeira lei da Termodinâmica:

 Como se trata de um ciclo termodinâmico o aluno deve recordar que a energia interna é uma função de estado e que seu valor depende do estagio inicial e final. Como se tem um ciclo termodinâmico:

Logo:

OBS: O aluno deve saber que potencia liquida produzida na usina nada mais é que o trabalho da turbina, então o W(turbina) = 1000 MW.

OBS: O aluno deve converter o calor da fonte quente pra unidade mega watt (MW)

Com todas as unidades em MW se tem o resultado:

OBS: 1- O aluno deve converter a unidade Kj/h para MW sabendo-se que MW = 10^6. j/s

2 – O aluno deve entender que o sinal da fonte quente é positivo devido ser um calor absorvido pelo sistema e o calor da fonte fria é negativo por ser um calor liberado pelo sistema.

Bons Estudos

Termodinâmica – Calculo de Trabalho ciclo Reversível e Isotermico

Um sistema termodinâmico consiste em um gás ideal. Ele sofre uma transformação AB reversível e isotérmica, como mostra, abaixo, o diagrama pressão versus volume.

Qual é, aproximadamente, a quantidade de calor em J trocada entre o sistema e a vizinhança durante essa transformação?

Equação para Resolução:

OBS: O aluno só pode usar essa expressão pra calcular trabalho se a transformação for reversível a temperatura constante. E o gás deve ter comportamento ideal

Resolução:

Pela Primeira Lei da Termodinâmica se tem:

 Para um gás ideal se tem:

Como o ciclo é isotérmico (Temperatura Constante) se tem:

Logo:

Como a transformação é reversível, se valendo da equação do gás ideal se pode determinar a pressão como função do volume e dai resolver a equação diferencial ordinária pelo método de separação:

A transformação é de V1 para V2, pelo grafico da Questão se tem:

Para calcular o trabalho se deve saber os valor do produto n.R.T, como esse produto é uma constante basta o aluno usar qualquer ponto do gráfico e substituir o P e o V dado por esse ponto na equação de estado do gás ideal e calcular o valor constante do produto n.R.T:

Como:

OBS: 1 – O aluno só pode usar essa equação de resolução por ser uma transformação reversível e isotérmica de um gás ideal.

2- O aluno deve entender que precisa usar um ponto qualquer do grafico da questão para estimar o valor do produto n.R.T que é uma constante.

Bons Estudos

Fenômeno de Transporte – Calculo de Potência de Bomba – Perda de carga em Filtro

Na figura, a bomba tem rendimento hidráulico total η = 60%, opera a uma vazão de 0,016 m³/s transportando água a 25 °C, que tem  densidade de 1 kg/L, do ponto 1 ao ponto 2. O sistema representado possui dois filtros, filtro A e filtro B.

  • despreze as perdas de carga na tubulação que não apresenta cotas;
  • despreze as perdas de carga em relação à redução de tubulação na entrada e saída da bomba;
  • considere o diâmetro da tubulação de 10 cm, a aceleração da gravidade g = 9,8 m/s² e a
  • considere o fator de atrito f = 0,043

Determine a potencia da bomba centrifuga:

Equação de Resolução:

Resolução: Adotar como ponto 1 na superfície do fluido no primeiro reservatório. Adotar como ponto 2 na superfície do fluido no segundo tanque.

-A pressão na superfície do reservatório tanto em (1) como em (2) é igual a pressão atmosférica 1 atm logo:

– Como o nível dos dois reservatório nem sobe e nem desce, (Regime Permanente), a velocidade na superfície do reservatório é zero logo:

obs: A velocidade na superfície do reservatório é zero diferente da velocidade de escoamento do fluido na tubulação que é diferente de zero.

-Diferença de cota é:

-Velocidade com que o fluido escoa na tubulação é:

obs: d é o diâmetro da tubulação que vale 10 cm que é igual a 0,1 m. Q é a vazão volumétrica que vale 0,016 m³/s.

– Perda de carga na tubulação é:

 obs: L é o comprimento linear total da tubulação que é 1,0+0,5+0,2+0,2+1,0+0,5 =3,4 m (pelo fluxograma da questão). f é o fator de atrito de Darcy que foi dado no enunciado e vale 0,043. Agora o aluno deve calcular a perda de carga Localizada.

-Perda de Carga Localizada é:

Obs: O aluno deve multiplicar a comprimento equivalente do joelho 90° por 6 já que existe 6 joelhos na mesma tubulação. A definição de mesma tubulação consiste em tubulações que possuem o mesmo diâmetro e mesma rugosidade relativa. No problema todos os trechos de tubulação possuem o mesmo diâmetro e mesma rugosidade relativa.

-Vazão mássica é:

-Potencia da bomba é:

Obs: 1- O aluno deve saber e usar todas as unidades no s.i.

Bons Estudos

Fenômeno de Transporte – Tubo de Pitot – Calculo de Vazão

O escoamento de ar com massa especifica igual a 1,3 kg/m³ escoando em uma tubulação de 0,1 m de diâmetro, para determinar a vazão mássica de escoamento se emprega a utilização de Tubo Pitot com fluido mercúrio que possui densidade de 13600 kg/m³. O tubo de Pitot apresenta um desnível h de 30 mm. Determine a vazão mássica de escoamento em kg/s. Despreze o atrito nos caculos e g = 9,8 m/s².

Equação pra Resolução:

Resolução:

Aplicando o balanço de energia mecânica entre o poento 1 e 2 se tem:

Como entre o ponto 1 e 2 no equipamento tubo de Pitot não tem nenhuma bomba logo:

Para o tubo de Pitot a perda de carga é desprezível logo:

Resultando em:

Obs: A tomada 1 mede a pressão com que o fluido escoa dentro da tubulação P1 já a tomada 2 mede o que chamamos de pressão de estagnação P2. Pela definição a pressão de estagnação está pra desaceleração do fluido tendendo a velocidade zero, logo devido a isso:

Com o manômetro se pode estimar o valor de ΔP:

Logo se tem:

OBS: 1- Quando o fluido que escoa pela tubulação for um gás ou  vapor, é comum os livros textos desprezarem a diferença das massas especificas da expressão do manômetro usando apenas a massa especifica do mercúrio.  Devido a um baixo valor de massa especifica do vapor ou gás em relação aos 13600 kg/m³ do mercúrio. O aluno deve ter atenção pois se for um liquido escoando pela tubulação não se deve desprezar a diferença.

Bons Estudos

 

Fenômeno de Trasporte – Calculo de Potência de Bomba

Uma instalação hidráulica deve ser construída para transportar 0,015 m3 /s de água (massa específica = 1 000 kg/m3 ) entre dois tanques, distantes 100 m um do outro, através de uma tubulação com 100 mm de diâmetro, conforme a figura abaixo.

Nas condições do sistema, o fator de atrito de Darcy correspondente ao escoamento pode ser estimado como 0,02. Considerando-se a aceleração da gravidade como 9,8 m/s2 , a relação entre o comprimento e o diâmetro da circunferência (π) como 3 e desprezando-se as perdas de carga localizadas, a potência mínima de uma bomba, com eficiência de 75%, necessária para essa instalação é aproximadamente igual a:

Equação para Resolução

Resolução: Adotar como ponto 1 na superfície do fluido no primeiro reservatório. Adotar como ponto 2 na superfície do fluido no segundo tanque.

-A pressão na superfície do reservatório tanto em (1) como em (2) é igual a pressão atmosférica 1atm logo:

– Como o nível dos dois reservatório nem sobe e nem desce, (Regime Permanente), a velocidade na superfície do reservatório é zero logo:

obs: A velocidade na superfície do reservatório é zero diferente da velocidade de escoamento do fluido na tubulação que é diferente de zero.

-Diferença de cota é

-Velocidade com que o fluido escoa na tubulação é

obs: d é o diâmetro da tubulação que vale 100 mm que é igual a 0,1 m. Q é a vazão volumetrica que vale 0,015 m³/s.

– Perda de carga na tubulação

obs: L é o comprimento linear da tubulação que é 100 m (pelo fluxograma da questão). f é o fator de atrito de Darcy que foi dado no enunciado e vale 0,02. Como não se tem válvulas e nem joelho ao longo da tubulação a perda de carga localizada é zero.

– Potencia da bomba

OBS 1- O aluno deve saber que a potencia absorvida da rede elétrica pelo equipamento (Pbomba) é igual a potencia cedida ao fluido (-Weixo) dividido pela eficiência do equipamento.

2 – Todas as bombas possuem uma etiqueta com seu dado de potencia e eficiência, dados esses estimados pelo fabricante

3 – A questão corresponde ao processo de bombeamento em regime permanente.

Bons Estudos

Termodinâmica – Ciclo de Carnot – Eficiência e Trabalho

Uma máquina de Carnot recebe 150 kJ/s de uma fonte quente a 425°C e rejeita calor para a fonte fria a 30°C. O trabalho desenvolvido vale:

Equação de Resolução:

n – É a eficiência

T fonte fria – Temperatura da Fonte Fria (K)

T fonte Quente – Temperatura da Fonte Quente (K)

w – É o trabalho (W)

Q (fonte Quente) – É o calor removido da fonte quente (Nos caos práticos são caldeiras)

Resolução: O aluno deve calcular primeiro a eficiência do ciclo de carnot usando as temperaturas em Kelvin da fonte Fria e Quente, sabendo-se a eficiência se calcula o trabalho gerado pela turbina através do produto eficiência e Calor em W absorvido da fonte quente que é informado no enunciado da questão.

OBS: 1 – Deve-se converter a temperatura das fontes de °C (Celsius) para K (Kelvin)

2 – Recordar que W = j/s logo KW = Kj/s

3 – 150 kj/s = 150000 j/s

Bons Estudos